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The data

I electricity consumption measured by Linky meters for EDF
I 27 millions of customers / 730 daily consumption over 2 years

Figure: Sample of 20 consumptions for 20 days



The data

I large data matrix x = (xij (t))1≤i≤n,1≤j≤p

I there is a need to summarize this data flow
I both n and p are (very) large
⇒ need for clustering of row (customers) and column (days of

consumption):
need for co-clustering of functional data



Co-clustering ?

Simultaneous clustering of rows (individuals) and column (features)

legend: color level = 1
T

∫
T xij (t)



Electricity consumption = functional data

I xij (t) are not totally known but only observed at a finite number of
times points xij (t1), xij (t2), . . .

I need to reconstruct the functional nature of data
⇒ basis expansion assumption:

xij (t) =
m∑

h=1

aijhφh(t), t ∈ [0,T ].

where (φh(t))h : spline, Fourier, wavelets...
I aijh estimated by least square smoothing
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Latent Block Model (LBM)

Assumptions
I row z = (zik )i,k and column w = (wh`)h,` partitions are

independent
I conditionally on (z,w), xij are independent and generated by a

block-specific distribution:

p(θk`)

orginal data coclustering result



Latent Block Model

Latent Block Model (LBM)
n × d random variables x are assumed to be independent once the
row z = (zik )i,k and column w = (wh`)h,` partitions are fixed:

p(x; θ) =
∑
z∈V

∑
w∈W

p(z; θ)p(w; θ)p(x|z,w; θ)

with
I V (W ) set of possible partitions of rows (column) into K (L) groups,
I p(z; θ) =

∏
ik α

zik
k and p(w; θ) =

∏
h` β

wh`
`

I p(x|z,w; θ) =
∏

ijk` p(aij ; θk`)vik wh`

I θ = (αk , β`, θk`)



The functional Latent Block Model (fLBM)

p(aij ; θk`) is the funHDDC distribution (Bouveyron & Jacques, ADAC, 2011):

aij |(zik = 1,wj` = 1) ∼ N (Uk`µk`,Uk`Σk`U t
k` + Ξk`)

where
I Uk` projects the aij into a low dimensional subspace for block k`
I (µk`,Σk`): (mean,variance) into the low-dimensional subspace,

Qt
k`(Uk`Σk`U t

k` + Ξk`)Qk` =



sk`1 0
. . .

0 sk`d

0

0

bk` 0
. . .

0 bk`



 d

 (m − d)

with sk`j > bk` for all j = 1, ..., d .
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LBM inference

LBM inference
I The aim is to estimate θ by maximizing the observed

log-likelihood

`(θ; x) =
∑
v,w

ln p(x,v,w; θ).

where functional data x are represented by their coefficient a,
and v and w are missing row and column partitions

I EM is not computationally tractable
I ⇒ variational or stochastic version should be used



SEM-Gibbs algorithm for LBM inference

I init : θ(0), w(0)

I SE step
I generate the row and column parititon (v(q+1),w(q+1)) using a

Gibbs sampling
I M step

I Estimate θ, conditionally on v(q+1),w(q+1) obtained at the SE step.



SEM-Gibbs: SE step

1. generate the row partition z(q+1)
i = (z(q+1)

i1 , . . . , z(q+1)
iK )|a,w(q) for

all 1 ≤ i ≤ n according to z(q+1)
i ∼M(1, z̃i1, . . . , z̃iK ) with for

1 ≤ k ≤ K

z̃ik = p(zik = 1|a,w(q); θ(q)) =
α
(q)
k fk (ai |w(q); θ(q))∑

k ′ α
(q)
k ′ fk ′(ai |w(q); θ(q))

where ai = (aij )j and fk (ai |w(q); θ(q)) =
∏

j` p(aij ; θ
(q)
k` )w (q)

j` ,

2. generate the column partition
w (q+1)

j = (w (q+1)
j1 , . . . ,w (q+1)

jL )|a, z(q+1) for all 1 ≤ j ≤ p according

to w (q+1)
j ∼M(1, w̃j1, . . . , z̃jL) with for 1 ≤ ` ≤ L

w̃j` = p(wj` = 1|a, z(q+1); θ(q)) =
β
(q)
` f`(aj |z(q+1); θ(q))∑

`′ β
(q)
`′ f`′(aj |z(q+1); θ(q))

where f`(xj |z(q+1); θ(q)) =
∏

ik p(aij ; θ
(q)
k` )z(q+1)

ik .



SEM-Gibbs: M step

same M step than for FunHDDC (Bouveyron & Jacques, ADAC,
2011):

I α
(q+1)
k = 1

n

∑
i z(q+1)

ik and β(q+1)
` = 1

p

∑
j w (q+1)

j` ,

I µ
(q+1)
k` = 1

n(q+1)
k`

∑
i
∑

j a
z(q+1)

ik w (q+1)
j`

ij with n(q+1)
k` =

∑
i
∑

j z(q+1)
ik w (q+1)

j` ,

I for the model parameters sk`j , bk` and Qk`j :
I d first columns of Qk : first eigenvectors of Ω

1
2 C(q)

k` Ω
1
2 ,

I sk`j , j = 1, ..., d : largest eigenvalues of Ω
1
2 C(q)

k` Ω
1
2 ,

I bk : trace(Ω
1
2 C(q)

k` Ω
1
2 )−

∑d
j=1 s(q)

k`j ,

where C(q)
k` is the sample covariance matrix of block k`:

C(q)
k` =

1

n(q)
k`

n∑
i=1

p∑
j=1

z(q+1)
ik ω

(q+1)
j` (aij − µ(q)

k` )t (aij − µ(q)
k` ),

and Ω = (ωjk )1≤j,k≤m with ωjk =
∫ T

0 φj (t)φk (t)dt .



LBM inference

SEM-Gibbs algorithm for LBM inference
I θ̂ is obtained by mean of the sample distribution (after a burn in

period)
I final bipartition (v̂, ŵ) estimated by MAP conditionally on θ̂



LBM inference

Choosing K and L
We use the ICL-BIC criterion developed in (Lomet 2012) for
continuous data co-clustering.
Thus, K and L can be chosen by maximizing

ICL-BIC(K ,L) = log p(x, v̂, ŵ; θ̂)− K − 1
2

log n − L− 1
2

log p − KLν
2

log(np)

where ν = md + d + 1 is the number of continuous parameters per
block and

log p(x, v̂, ŵ; θ̂) =
∏
ik

ẑik logαk +
∏
j`

ŵj` log β` +
∑
ijk`

ẑik ŵj` log p(aij ; θ̂k`).
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Simulation setting

I f1(t), ..., f4(t) are defined as block means
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I all curves are sampled as follows:

xij (t)|Zik Wjl = 1 ∼ N (µkl (t), σ2),

where σ = 0.3, µ11 = µ21 = µ33 = µ42 = f1, µ12 = µ22 = µ31 = f2,
µ13 = µ32 = f3 and µ23 = µ41 = µ43 = f4.

I noise is added by adding τ% of curves from other blocks.



3 scenarios of simulation

Table: Parameter values for the three simulation scenarios.

Scenario A B C
n (nb. of rows) 100
p (nb. of columns) 100
T (length of curves) 30
K (row groups nb.) 3 4 4
L (col. groups nb.) 3 3 3
α (row group prop.) (0.333, ..., 0.333) (0.2, 0.4, 0.1, 0.3) (0.2, 0.4, 0.1, 0.3)

β (col. group prop.) (0.333, ..., 0.333) (0.4, 0.3, 0.3) (0.4, 0.3, 0.3)
τ (simulation noise) 0 0.1 0.3



ICL performance for choosing (K ,L)

Scenario A (K = 3, L = 3)
K\L 1 2 3 4 5 6

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 100 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0

Scenario B (K = 4, L = 3)
K\L 1 2 3 4 5 6

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 70 0 1 0
5 0 0 26 1 0 0
6 0 0 2 0 0 0

Scenario C (K = 4, L = 3)
K\Q 1 2 3 4 5 6

1 0 0 0 0 0 0
2 0 0 17 0 0 0
3 0 0 77 0 0 0
4 0 0 5 0 0 0
5 0 0 1 0 0 0
6 0 0 0 0 0 0



Co-clustering results for scenario B

True partition FunLBM partition



Co-clustering results

random kmeans functional
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Figure: Adjusted Rand index values for the different initialization procedures
on the three simulation scenarios.
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The data

I electricity consumption measured by Linky meters for EDF
I 27 millions of customers / 730 daily consumption over 2 years

Figure: Sample of 20 consumptions for 20 days



ICL values (choice of (K ,L))
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Clustering of columns (dates)
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Average consumption curves of each block



Geographical clusters distributions

Figure: Proportions on households per French departments in each of the 10
clusters found by FunLBM.



Conclusions

Results
I real data application needs development of a co-clustering

algorithm for functional data
I co-clustering algorithm has been developed based on a

functional Latent Block model
I numerical experiments show the efficiency of SEM-Gibbs for

model estimation as well as ICL-BIC for selecting of the number
of blocks

I Results on EDF data are significant
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